skip to main content


Search for: All records

Creators/Authors contains: "Ahlen, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the first comprehensive halo occupation distribution (HOD) analysis of the Dark Energy Spectroscopic Instrument (DESI) One-Percent Survey luminous red galaxy (LRG) and Quasi Stellar Object (QSO) samples. We constrain the HOD of each sample and test possible HOD extensions by fitting the redshift-space galaxy 2-point correlation functions in 0.15 < r < 32 h−1 Mpc in a set of fiducial redshift bins. We use AbacusSummit cubic boxes at Planck 2018 cosmology as model templates and forward model galaxy clustering with the AbacusHOD package. We achieve good fits with a standard HOD model with velocity bias, and we find no evidence for galaxy assembly bias or satellite profile modulation at the current level of statistical uncertainty. For LRGs in 0.4 < z < 0.6, we infer a satellite fraction of $f_\mathrm{sat} = 11\pm 1~{y{\ \mathrm{per\,cent}}}$, a mean halo mass of $\log _{10}\overline{M}_h/M_\odot =13.40^{+0.02}_{-0.02}$, and a linear bias of $b_\mathrm{lin} = 1.93_{-0.04}^{+0.06}$. For LRGs in 0.6 < z < 0.8, we find $f_\mathrm{sat}=14\pm 1~{{\ \mathrm{per\,cent}}}$, $\log _{10}\overline{M}_h/M_\odot =13.24^{+0.02}_{-0.02}$, and $b_\mathrm{lin}=2.08_{-0.03}^{+0.03}$. For QSOs, we infer $f_\mathrm{sat}=3^{+8}_{-2}\mathrm{per\,cent}$, $\log _{10}\overline{M}_h/M_\odot = 12.65^{+0.09}_{-0.04}$, and $b_\mathrm{lin} = 2.63_{-0.26}^{+0.37}$ in redshift range 0.8 < z < 2.1. Using these fits, we generate a large suite of high fidelity galaxy mocks, forming the basis of systematic tests for DESI Y1 cosmological analyses. We also study the redshift-evolution of the DESI LRG sample from z = 0.4 up to z = 1.1, revealling significant and interesting trends in mean halo mass, linear bias, and satellite fraction.

     
    more » « less
  2. Abstract

    We explore the galaxy-halo connection information that is available in low-redshift samples from the early data release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD) fromz= 0.1 to 0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright Galaxy Survey. In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC) measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package,galtab, which enables the rapid, precise prediction of CiC for any HOD model available inhalotools. This methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies inz∼ 0.15 samples with limiting absolute magnitudeMr< −20.0 andMr< −20.5 samples is positively correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor positive central assembly bias for the brighterMr< −21.0 sample atz∼ 0.25 (94.8% significance), but there is no significant evidence for assembly bias with the same luminosity threshold atz∼ 0.15. We provide our constraints for each threshold sample’s characteristic halo masses, assembly bias, and other HOD parameters. These constraints are expected to be significantly tightened with future DESI data, which will span an area 100 times larger than that of SV3.

     
    more » « less
  3. ABSTRACT

    We estimate the redshift-dependent, anisotropic clustering signal in the Dark Energy Spectroscopic Instrument (DESI) Year 1 Survey created by tidal alignments of Luminous Red Galaxies (LRGs) and a selection-induced galaxy orientation bias. To this end, we measured the correlation between LRG shapes and the tidal field with DESI’s Year 1 redshifts, as traced by LRGs and Emission-Line Galaxies. We also estimate the galaxy orientation bias of LRGs caused by DESI’s aperture-based selection, and find it to increase by a factor of seven between redshifts 0.4−1.1 due to redder, fainter galaxies falling closer to DESI’s imaging selection cuts. These effects combine to dampen measurements of the quadrupole of the correlation function (ξ2) caused by structure growth on scales of 10–80 h−1 Mpc by about 0.15 per cent for low redshifts (0.4 < z < 0.6) and 0.8 per cent for high (0.8 < z < 1.1), a significant fraction of DESI’s error budget. We provide estimates of the ξ2 signal created by intrinsic alignments that can be used to correct this effect, which is necessary to meet DESI’s forecasted precision on measuring the growth rate of structure. While imaging quality varies across DESI’s footprint, we find no significant difference in this effect between imaging regions in the Legacy Imaging Survey.

     
    more » « less
  4. ABSTRACT

    We present new spectroscopic and photometric follow-up observations of the known sample of extreme coronal line-emitting galaxies (ECLEs) identified in the Sloan Digital Sky Survey (SDSS). With these new data, observations of the ECLE sample now span a period of two decades following their initial SDSS detections. We confirm the non-recurrence of the iron coronal line signatures in five of the seven objects, further supporting their identification as the transient light echoes of tidal disruption events (TDEs). Photometric observations of these objects in optical bands show little overall evolution. In contrast, mid-infrared (MIR) observations show ongoing long-term declines consistent with power-law decay. The remaining two objects had been classified as active galactic nuclei (AGNs) with unusually strong coronal lines rather than being TDE related, given the persistence of the coronal lines in earlier follow-up spectra. We confirm this classification, with our spectra continuing to show the presence of strong, unchanged coronal line features and AGN-like MIR colours and behaviour. We have constructed spectral templates of both subtypes of ECLE to aid in distinguishing the likely origin of newly discovered ECLEs. We highlight the need for higher cadence, and more rapid, follow-up observations of such objects to better constrain their properties and evolution. We also discuss the relationships between ECLEs, TDEs, and other identified transients having significant MIR variability.

     
    more » « less
  5. ABSTRACT

    We describe the target selection and characteristics of the DESI Peculiar Velocity Survey, the largest survey of peculiar velocities (PVs) using both the fundamental plane (FP) and the Tully–Fisher (TF) relationship planned to date. We detail how we identify suitable early-type galaxies (ETGs) for the FP and suitable late-type galaxies (LTGs) for the TF relation using the photometric data provided by the DESI Legacy Imaging Survey DR9. Subsequently, we provide targets for 373 533 ETGs and 118 637 LTGs within the Dark Energy Spectroscopic Instrument (DESI) 5-yr footprint. We validate these photometric selections using existing morphological classifications. Furthermore, we demonstrate using survey validation data that DESI is able to measure the spectroscopic properties to sufficient precision to obtain PVs for our targets. Based on realistic DESI fibre assignment simulations and spectroscopic success rates, we predict the final DESI PV Survey will obtain ∼133 000 FP-based and ∼53 000 TF-based PV measurements over an area of 14 000 deg2. We forecast the ability of using these data to measure the clustering of galaxy positions and PVs from the combined DESI PV and Bright Galaxy Surveys (BGS), which allows for cancellation of cosmic variance at low redshifts. With these forecasts, we anticipate a 4 per cent statistical measurement on the growth rate of structure at z < 0.15. This is over two times better than achievable with redshifts from the BGS alone. The combined DESI PV and BGS will enable the most precise tests to date of the time and scale dependence of large-scale structure growth at z < 0.15.

     
    more » « less
  6. Abstract

    We report the first results of a high-redshift (z≳ 5) quasar survey using the Dark Energy Spectroscopic Instrument (DESI). As a DESI secondary target program, this survey is designed to carry out a systematic search and investigation of quasars at 4.8 <z< 6.8. The target selection is based on the DESI Legacy Imaging Surveys (the Legacy Surveys) DR9 photometry, combined with the Pan-STARRS1 data andJ-band photometry from public surveys. A first quasar sample has been constructed from the DESI Survey Validation 3 (SV3) and first-year observations until 2022 May. This sample includes more than 400 new quasars at redshift 4.7 ≤z< 6.6, down to 21.5 magnitude (AB) in thezband, discovered from 35% of the entire target sample. Remarkably, there are 220 new quasars identified atz≥ 5, more than one-third of existing quasars previously published at this redshift. The observations so far result in an average success rate of 23% atz> 4.7. The current spectral data set has already allowed analysis of interesting individual objects (e.g., quasars with damped Lyαabsorbers and broad absorption line features), and statistical analysis will follow the survey’s completion. A set of science projects will be carried out leveraging this program, including quasar luminosity function, quasar clustering, intergalactic medium, quasar spectral properties, intervening absorbers, and properties of early supermassive black holes. Additionally, a sample of 38 new quasars atz∼ 3.8–5.7 discovered from a pilot survey in the DESI SV1 is also published in this paper.

     
    more » « less
  7. Abstract

    We present findings of the detection of Magnesium II (Mgii,λ= 2796, 2803 Å) absorbers from the early data release of the Dark Energy Spectroscopic Instrument (DESI). DESI is projected to obtain spectroscopy of approximately 3 million quasars (QSOs), of which over 99% are anticipated to be at redshifts greater thanz> 0.3, such that DESI would be able to observe an associated or intervening Mgiiabsorber illuminated by the background QSO. We have developed an autonomous supplementary spectral pipeline that detects these systems through an initial line-fitting process and then confirms the line properties using a Markov Chain Monte Carlo sampler. Based upon a visual inspection of the resulting systems, we estimate that this sample has a purity greater than 99%. We have also investigated the completeness of our sample in regard to both the signal-to-noise properties of the input spectra and the rest-frame equivalent width (W0) of the absorber systems. From a parent catalog containing 83,207 quasars, we detect a total of 23,921 Mgiiabsorption systems following a series of quality cuts. Extrapolating from this occurrence rate of 28.8% implies a catalog at the completion of the five-year DESI survey that will contain over eight hundred thousand Mgiiabsorbers. The cataloging of these systems will enable significant further research because they carry information regarding circumgalactic medium environments, the distribution of intervening galaxies, and the growth of metallicity across the redshift range 0.3 ≤z< 2.5.

     
    more » « less
  8. Abstract

    We utilize ∼17,000 bright luminous red galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep (∼2.5 hr galaxy−1exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at 0.4 <z< 1.3. We useProspectorto infer nonparametric star formation histories and identify a significant population of recently quenched galaxies that have joined the quiescent population within the past ∼1 Gyr. The highest-redshift subset (277 atz> 1) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At 0.4 <z< 0.8, we measure the number density of quiescent LRGs, finding that recently quenched galaxies constitute a growing fraction of the massive galaxy population with increasing look-back time. Finally, we quantify the importance of this population among massive (log(M/M)> 11.2) LRGs by measuring the fraction of stellar mass each galaxy formed in the gigayear before observation,f1 Gyr. Although galaxies withf1 Gyr> 0.1 are rare atz∼ 0.4 (≲0.5% of the population), byz∼ 0.8, they constitute ∼3% of massive galaxies. Relaxing this threshold, we find that galaxies withf1 Gyr> 5% constitute ∼10% of the massive galaxy population atz∼ 0.8. We also identify a small but significant sample of galaxies atz= 1.1–1.3 that formed withf1 Gyr> 50%, implying that they may be analogs to high-redshift quiescent galaxies that formed on similar timescales. Future analysis of this unprecedented sample promises to illuminate the physical mechanisms that drive the quenching of massive galaxies after cosmic noon.

     
    more » « less
  9. ABSTRACT

    We present the one-dimensional Ly α forest power spectrum measurement using the first data provided by the Dark Energy Spectroscopic Instrument (DESI). The data sample comprises 26 330 quasar spectra, at redshift z > 2.1, contained in the DESI Early Data Release and the first 2 months of the main survey. We employ a Fast Fourier Transform (FFT) estimator and compare the resulting power spectrum to an alternative likelihood-based method in a companion paper. We investigate methodological and instrumental contaminants associated with the new DESI instrument, applying techniques similar to previous Sloan Digital Sky Survey (SDSS) measurements. We use synthetic data based on lognormal approximation to validate and correct our measurement. We compare our resulting power spectrum with previous SDSS and high-resolution measurements. With relatively small number statistics, we successfully perform the FFT measurement, which is already competitive in terms of the scale range. At the end of the DESI survey, we expect a five times larger Ly α forest sample than SDSS, providing an unprecedented precise one-dimensional power spectrum measurement.

     
    more » « less
  10. Abstract

    Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. Atz< 0.6, the DESI Bright Galaxy Survey (BGS) will produce the most detailed map of the universe during the dark-energy-dominated epoch with redshifts of >10 million galaxies spanning 14,000 deg2. In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target anr< 19.5 mag limited sample (BGS Bright), a fainter 19.5 <r< 20.175 color-selected sample (BGS Faint), and a smaller low-zquasar sample. BGS will observe these targets using exposure times scaled to achieve homogeneous completeness and cover the footprint three times. We use observations from the Survey Validation programs conducted prior to the main survey along with simulations to show that BGS can complete its strategy and make optimal use of “bright” time. BGS targets have stellar contamination <1%, and their densities do not depend strongly on imaging properties. BGS Bright will achieve >80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success over any observing condition. BGS meets the requirements for an extensive range of scientific applications. BGS will yield the most precise baryon acoustic oscillation and redshift-space distortion measurements atz< 0.4. It presents opportunities for new methods that require highly complete and dense samples (e.g.,N-point statistics, multitracers). BGS further provides a powerful tool to study galaxy populations and the relations between galaxies and dark matter.

     
    more » « less